6ES7221-1EF22-0XA0库存现货
电镀之后版辊的粗细不均匀,必须用磨削机经过几次磨削把它磨成粗细均匀的产品,而且磨削的精度要控制在0.01mm到0.05mm之间,加工时,刀具作快速直线运动来扫描版辊表面,同时版辊在不断旋转,就可以加工出有一定锥度的表面,采用磨削加工,既能用简单刀具实现高效切削,又能简化系统结构。国外生产的磨削机是用复杂的继电器控制的,存在可靠性差、可塑性差、接线复杂、自动化程度低等一系列缺点,并且为了在日益激烈的竞争中提高市场竞争力,选用PLC作为控制单元是较为合适的方案。本文提出了利用变频器和PLC定位控制单元的伺服系统构成磨削机的见解与方法,给出了控制系统软、硬件结构的设计方案。
1 工艺流程
一上电,拖板和控制进刀距离的伺服归零,接着为了实现合适的进刀距离开始检测,检测完毕开始真正的磨削过程。磨削机控制系统中,通过3台变频器来控制用于拖板移动,刀盘转动,版辊转动的电机,刀盘主轴进给系统应用PLC(可编控制器)定位伺服控制系统,通过伺服来实现一定的进刀距离,磨削出所要求的版辊,永宏FBs-MN系列PLC高速输入读取检测时探头的读数。光电接近开关装在转动轮上,把拖板的长度转化为脉冲信号,利用可编程控制器的计数器进行计数,当计数值达到设定值时,控制拖板停止移动,横向移动控制精度要求不高,用PLC内部计数器来实现即可,节约了成本。喷雾阀在机器运行时,给版辊喷洒冷却液,来保证成形辊不受磨损及型材表面的光洁度。为了提高生产线使用的安全性、运行的可靠性、维护的方便性、操作的灵活性、故障诊断的智能性、磨削的准确性,设计的控制系统采用自动(包括粗切、精切)/手动控制方式。在选择手动操作时,通过触摸屏上的软按钮实现设备启、停控制,操作手柄控制伺服的进或退点动,便于设备调试维修。在选择自动操作时,在触摸屏上设置版辊直径、版辊长度、切削量,显示检测时的版辊直径大值,小值和平均值等信息和检测到的故障信息,从而也提高了控制便利性。改变变频器的设定频率,可改变拖板移动速度;版辊旋转速度和刀盘旋转速度。
2 磨削机PLC控制系统的硬件设计
2.1磨削机设备组成及设计目标
磨削机主要由1台永宏FBs-44MN系列PLC,1套三菱MR-J2S系列交流伺服系统,3台三菱FR-E540系列变频器,1台WEINVIEW的510T,1个4DA模块组成。其核心是可编程控制器,它的输出部分主要用于控制伺服和驱动电机。其输人部分主要接收各类保护继电器的动作信号。整个设计具体可分为以下4部分:①采用PLC:FBs-44MN完成检测(计算出佳的进刀量),自动磨削等工序。②利用伺服实现对磨削进刀量的双闭环控制。③利用内部计数器和光电开关读取横向拖板移动距离。④采用触摸屏实现了更为方便、友好的人机通讯。
2.2 PLC控制系统构成
控制系统由可编程逻辑控制器FBs-44MN、伺服、光电接近开关和D/A扩展模块以及触摸屏元件组成,实现磨削过程中基本逻辑动作、检测、伺服闭环控制和人机通讯四大功能
1)伺服和定位控制器的结合模块:磨削机要求丝杠上的刀盘在加工前后必须停拖板电机在相同的位置,以便下一加工循环,否则将造成刀具或工件损坏。准确定位在普通继电器控制的鼠笼式交流电机上实现起来比较麻烦,我们采取伺服系统来实现定位,引人速度负反馈消除了外界参数变化和扰动对系统状态的影响,使该系统具有动态响应快、定位精度高、系统稳定性好等特点。为了在工作过程中使精度控制在规定的误差以内,进刀距离通过检测采用闭环跟踪控制。首先是用FBs-44MN读取检测时探头接触版辊的读数,并根据公式显示出版辊的直径大,小,平均值(与制定合适的切削量有关),然后用此时的伺服读数减去探头读数,再加上需要的切削量求出比较**的进刀量,后开始整个自动磨削过程。FBs-44MN作为智能化的定位控制器按用户编制的定位程序向驱动器发出定位脉冲、运行方向等,信号驱动器按这些控制信号驱动伺服电机带动滚珠丝杠进行定位,对于伺服电机,有伺服准备、伺服结束和零位三个信号反馈,外部设定用数字开关可将定位点位置和速度等数值送人定位单元,定位单元通过总线连接到FX系列PLC扩展口上,成为PLC控制系统中的定位智能控制环节,在定位单元内,常量的设置与监控、参数的改变可以通过使用连接到PLC上的数据存取单元完成,因此可以在运行过程中由PLC指定模块号(这里4DA是1号模块),传送定位速度等数据,并能在PLC中监视GM的实时定位信号及运行或停止状态。相应地在PLC中分配有输人继电器,输出继电器,辅助继电器,以及特殊辅助继电器等设备。
进刀量用伺服电机来控制,伺服电机的控制由PLC实现。PLC产生两路信号,一路为伺服脉冲信号,它的频率和伺服电机的转速成正比,它的个数决定了伺服电机旋转的角度。另一路为方向电平信号DIR。当DIR为高电平时,电机顺时针旋转;相反,当DIR为低电平时,电机为逆时针旋转。磨削中分为粗切和精切,精切的精度要求很高,一般切削量不能大于0.05mm,伺服前进lmm,就发了1600个脉冲,相当于一个脉冲就前进了0.625um,精度非常高,从而使得丝杠得到**定位。伺服控制刀盘进刀时,进刀速度不是不变的,当刀盘接近版辊的时候要自动开始减速,以免过冲影响磨削质量。控制刀盘进刀的丝杠上有三个接近开关,一个是用来原点定位的,另外两个分别是进、退接近开关。
3) 变频器模块:为实现三相异步电动机速度调整和稳定运转,我们采用变频器来调速电机。变频器的模拟输人电压端子接受4DA速度电压值后,根据内部设定的参数值来对异步电动机调速。调速方式为WF型,这种调速方式在改变变频器输出频率的同时改变变频器的输出电压,两者的比值为定,以保持异步电动机磁通不变。该调速方式简便、可靠,能够满足电机调速的要求。
4) 触摸屏:触摸屏与PLC相配合,使对设备的任意多的操作控制、大量的运行信息反馈通过对触摸屏编程予与实现,PLC与触摸屏之间通过串行接口通讯,连线简洁,整个系统更紧凑、美观。
3 系统的软件设计
3.1 PLC控制的软件设计
PLC控制 软件的设计大致可以分为以下几个模块:上电初始化、检测、自动磨削、报警及报替处理。选用永宏的FBS系列PLC,其内部包含基本逻辑指令、步进顺控指令和功能指令,配合扩展模块的特殊指令,编程灵活、修改方便且运行稳定。首**行初始化,初始化包括拖板、刀盘进给丝杠和伺服的归零,一上电伺服控制刀盘的轴快速移动到零点位置,相应的伺服读数为零,拖板也根据需要回到零点位置,若刀盘主轴进给超过大给定行程时,系统发出超程报警,同时刀盘主轴自动返回零位。比较麻烦的是不知道要切削几次才可以达到磨削的期望值,为了提高效率,用户可以将常用的磨削周期存储起来以备后用,而不必重新设计磨削周期。
2) DA模块:版辊旋转,刀盘旋转,拖板移动分别用3台电动机拖动,变频器根据输入的版辊直径,版辊长度通过调用公式来调节电动机转速,保证磨削出一定锥度的表面。三个速度和版辊直径,长度之间存在着一定的机械关系,而这种折算关系存储在PLC中并在磨削前自动调用出来,拖板的横向移动距离用接近开关检测,电机每转一周检测5个开关(丝杠前进10mm),计5次数,一次计数就移动2mm,停止时已经记下一定的距离,当拖板退回去的时候可以根据折算好的计数值自动停止移动。无论刀盘转速还是版辊转速、拖板移动速度发生波动,都会影响磨削出来的表面精度,因此,当其中一个速度发生波动时,另外两个的转速必须迅速跟踪。无论手动操作时设定速度还是根据版辊直径,长度通过公式求得刀盘、版辊、拖板速度值,都要将其值传给三菱变频器。为此,我们增加4DA模块。该模块提供4个输出通道(要用到3个通道),电压输出模式,对应于-10V-+10V。电流输出模式,分别对应于4mA-20mA。
3.2触摸屏画面设计
510T为彩色液晶,256色显示。触摸屏可取代操作按钮、拨码盘,SEGA数码管,使本系统配置、连线,PLC程序更加简洁。通过组态软件,可生产丰富的用户画面。既方便操作者使用,又便于设计者开发,是理想的人机界面。该系统中主要设计了欢迎登录画面、主画面、手动操作画面、粗切显示监控画面、粗切操作画面、精切显示监控画面、精切操作画面、故障显示画面和报警履历显示等9个基本画面和帮助及故障详细显示等10个窗口画面。这些画面从个人电脑传送到触摸屏即可使用,而触摸屏与PLC通过RS-422通信电缆连接可实现信息互通。在画面的设计调试过程中,也可从触摸屏上传画面到计算机对画面进行修改。欢迎登录画面要求操作者登录前先输人口令,以防非操作人员进入后随意修改和操作。主画面用来选择某项操作,按相应按钮即切换到相应的画面。手动操作画面利用触摸键丰富而灵活多样的功能设置,对设备直接进行手动起动、停机控制,归零,检测。自动操作画面(分粗切、精切)主要用来设定切削量、版辊直径、拖板移动距离并开始切削等动作。监控画面有两个,其中一个用来显示各限位开关的动作情况,另一个用来显示各输出设备的动作情况,两者都以指示灯和标注文字属性的变化来表示动作与否。故障显示画面对设备的故障进行实时报警,而报警履历显示画面用来显示报警的日期、时间、消息、确认时间和恢复时间,当用手触摸某一故障时将弹出窗口画面详细显示相关内容及应采取的措施。闭环控制是以要求的产品质量为依准,判断运行过程中是否有外部因素引起的切削量的不足,实时地调整切削量,经过几次补偿,达到理想产品要求。
4 结束语
伺服系统双闭环控制(位置环、速度环)可以把稳态误差控制在1wm以下,远远小于土0.03mm,因此,本系统的精度是很高的。本文提出的应用PLC和HMI控制磨削机设备满足控制要求,在实际运行中是切实可行的。通过工业运行证明,这种系统硬件设计简单实用、工作可靠、运行灵活、,具有推广价值。软件编程采用模块化设计,功能完善。采用PLC一触摸屏结合的电气控制方案并与机械技术组合一体,使该磨削设备结构紧凑、自动化程度高、生产效率高,并且设备的可维护性和灵活性大为提高。
近年来,随着大规模集成电路的发展,可编程控制器得到了迅速的发展,并广泛应用于各种领域中。由于可编程控制器具有自身的通讯端口和通信协议,这就使得工业现场的实时监控和控制成为可能。所以在实际的运用中,常常采用PLC作为下位控制机实现整个过程的自动控制。而微机在数据处理及人机界面方面有得天独厚的优势,因此采用微机为上位机来进行数据的显示、控制参数的修改及过程的控制,这样就不得不解决上位管理机与下位控制机之间的通讯问题。
由于串行通讯具有线路简单、应用灵活、可靠性高等优点,并且普通微机上均都带有串口,便于实现,所以微机与PLC之间常采用串行异步通讯。VC具有面向对象的设计方法、简单方便的串行通讯和实用性强等优点,无需借用其他语言就可以开发出的控制系统通讯软件。本文重点就是介绍在bbbbbbs98环境下如何利用VC来实现PC机与永宏PLC之间的串行通讯。并以实际控制系统“半自动化灯检机”为例加以说明。
2 控制系统简介
半自动化灯检机系统的主要工艺流程:供瓶机供瓶→进瓶输送带送瓶→气缸放瓶→主传动履带式置瓶棍移送瓶→进入高速旋转工位旋瓶→进入低速旋转工位慢速旋瓶(同时也就进入灯检工位)→至出瓶输送带送瓶→进入剔除工位分瓶(由电磁阀来控制气缸动作)。下位机主要采用永宏PLC完成现场的状态检测与控制。上位机则用一般的微机,通过RS-232与PLC通信接受现场状态的显示并加以控制生产过程。电机的运转通过PLC控制,而电机的升降速则由变频器调节。因此本系统软件需要完成的主要任务是:从PLC,变频器循环接受现场的状态,并根据不同的状态控制变频器及电机的运转。主要的界面有:监控画面,密码设置,参数设置和报警画面等。其中监控画面设有:操作按钮,如停止,启动及产品合格数的实时显示。画面中的每一个按钮或状态显示都需要上位机与下位机的通信来完成。
3 永宏PLC的通讯格式
整个通讯采用上位机主动发送和接收的方式,PLC内部不需要特定的梯形图编程来做下位机通讯程序。
3.1 通讯格式
计算机与永宏FB系列PLC通讯必须遵从FB-PLC通讯协议。无论是上位机发出的命令信息格式还是下位机发出的回应信息格式均可分为6个资料位,如图1所示。
(1) 起始字元(STX):ASCII码的起始字元STX对应的16进制数为02H。无论命令信息还是回应信息,它们的起始字元均为STX,接收方以此来判知传输资料的开始。
(2) 从机站号:为两位16进制数。FB-PLC的站号是什么,这个值就是多少。因为FB-PLC的站号可以为1-255,所以这个值的范围为01H-FFH。
(3) 命令号码:为两位16进制数。所谓命令号码是指上位机要求下位机所执行的动作类别,例如要求读取或写入单点状态、写入或读取暂存器资料、强制设定、运行、停止等等。在回应信息中,下位机会将从上位机接收到的命令号码原原本本的随同其它信息一同发送给上位机。
(4) 本文资料:可为0(无本文资料)-500个ASCII字元。在命令信息中,此信息用于指定命令所要运作或存取的对象及要写入的数值。如果通讯正确,那么在回应信息中此栏为0(30H)和从上位机接收到的本文资料;如果通讯异常,那么为错误码。
(5) 校验码(Checksum):校验码是将1-4各栏的所有ASCII字元的16进制数值以“LRC(Longitudinal Redundancy Check)”法计算出1个Byte长度(两个16进制数值00-FFH)的校验码。当下位机接收到信息后,用同样的方法计算出接收信息的校验码,如果两个校验码相同,则说明传送正。
(6) 结束字元(ETX):ASCII码的结束字元ETX对应的16进制数为03H。无论命令信息还是回应信息,他们的结束字元均为ETX,接收方以此来判知此次通讯已结束。
3.2 通讯命令
永宏系列PLC有多种命令字,常用的几种描述如附表所示。例如,上位机要读取PLC内部继电器M1和M2的状态,则上位机发送的命令字符串格式为:
起始符(02h)+站号(01)+命令字(44)+个数(02)+起始地址(0001)+校验码(3B)+结束符
相应下位机响应的字符串为:
起始符(02h)+站号(01)+命令字(44)+错误码(0)+M0,M1状态(10)+校验码(5C)+结束符
若要对字元件进行写操作,那么命令码改为47。表明该指令要向PLC内部寄存器写入数据,同时要给出写入的数据个数、开始寄存器和数据内容。
校验和在信息帧的尾部,用来判断传输的正确与否。当数据从信息源出发,由于信道总是有一定的噪声存在,在信号达到信宿之前会与噪声发生叠加,使接收端收到的二进制数位和发送端实际发送的二进制数位不一致,因而产生差错。进行差错检验的方法很多,常用的有奇偶校验码,水平垂直冗余校验LRC,目前广泛使用的是LRC校验码,它可以查出99%以上18位或更长的突出错误,因而在计算机与PLC进行点对点的短程通讯时,采用这种校验方法出错的几率较小。PLC接收到计算机发送的命令后,如果没有错误,PLC会发出确认码“0”;若有错误,PLC会发出错误代码“1”。