英标方管/欧标方管:
从管子的变形特性中可以看出,弯曲力是沿着管件表面的径向起作用的,在管件表面所产生的应力很大,使图1中管内未填充段产生凹陷,导致弯头一次成形不好,增加了修复时间和费用。在压制过程中由于管子内、外弧的侧翼易产生鼓凸和凹陷,使放在管子内部的芯子及马蹄在压制完成后不易取出,增加了消耗在取芯子上的辅助时间,降低了生产效率。通过以上的分析可以看出,该工艺无法避免地会出现以上缺陷,而如果其变形是沿着轴向进行的,则可在成形方面较好地解决这一问题,可考虑采用轴向压制工艺。理论依据建立力学模型径向冷压力学模型如图2所示,径向冷压模型可简化为简支梁的形式,图2径I1冷压力学模型图中q值为4t,其挠度公式为(警)9。x/(12EJ)当=1/2Z时,fl=flt4~fi:f1=丽qll"了(其中=/1)轴向冷压力学模型如图3所示。轴向冷压是指压头对管节的作用力方向在管节的轴线方向上,而实际的弯曲力为压力与模具对其反作用力的合力,其力学模型可简化为悬臂梁的形式,其挠度公式为:f2=11q214/(192EJ)图3轴向冷压力学模型两种力学模型的比较在两种情况下,管件的挠度相等,即有:f。
欧标方管规格表:
350*300*5.75 350*300*6 350*250*9.75 350*250*10
350*250*7.75 350*250*8 350*200*15.75 350*200*16
350*220*7.5 350*220*8 350*180*9.5 350*180*10
350*160*9.5 350*160*10 350*100*9.75 350*100*10
320*200*9.5 320*200*10 350*150*9.5 350*150*10
320*150*4 300*300*15.75 300*300*16 300*300*13.75
300*300*14 300*300*11.75 300*300*12 300*300*9.75
300*300*10 300*300*7.75 300*300*8 300*300*5.75
300*300*6 300*300*4.75 300*300*5 300*250*7.75
300*250*8 300*200*11.75 300*200*12 300*200*9.75
300*200*10 300*200*7.75 300*200*8 300*200*5.75
300*200*6 300*200*4.75 300*200*5 300*200*3.75
300*200*4 300*180*9.75 300*180*10 300*160*11.75
300*160*12 300*160*9.75 300*160*10 300*160*7.75
300*160*8 300*150*9.75 300*150*10 300*150*7.75
300*150*8 300*150*6 300*150*5.75 300*150*4.75
300*150*5 300*150*3.75 300*150*4 300*120*9.75
300*120*10 300*120*7.75 300*120*8 300*100*9.75
300*100*10 300*100*7.75 300*100*8 300*100*5.75
300*100*6 300*100*4.75 300*100*5 300*100*3.75
英标方管80*60*5尺寸参照
分配给每把刀具的每个+或-按钮为每次按钮按压赋予一个特定的偏置值。这些增量非常小(通常是.2英寸)以减少操作员对刀具磨损补偿过度的的可能性。连接到该反转立式机床控制器上的按钮使操作员即使不看控制屏也能改变刀具偏置。每按压一次按钮将使刀具偏置增加或减少预定的距离。按钮偏置法节约了时间,它无需从机床的控制屏导航来输入偏置值。它还消除了操作员键入错误偏置值的可能性。偏置值存储在控制器内以防如果输入了很大的一个偏置值(按压按钮很多次)而导致碰撞现象发生。


