1、前言
任何微小的粒子都具有非常高的能量,只是能量表现的形式不同,对外的性质也各不相同。如磁性材料钕铁硼,在颗粒度为700目时只能制作成普通磁性的磁铁,当颗粒度达到1200目时,则可以制作磁能级高达70高斯以上的永磁体,当颗粒度达到2000目时,则磁能级可以达到150高斯以上。
高能氧是指具有较高能量的活性氧分子团构成的微小活性氧气泡,主要存在于水或空气环境中。
氧气经过电离后,以高速涡旋运动产生切割作用、并随着高速涡旋运动产生的高压作用,把电离的氧气切割并压缩成微小的气泡,并以极高的线速度射入水中,在水中形成初始运动速度较高、具有比较高的移动效率和转移效率的活性氧分子团——高能氧。
高能氧所拥有的能量全部体现在氧的微观粒子对外表现的特性方面,因此可以称这种能量为粒子能量。
在能量的作用下,高能氧可以快速完成对水和空气中污染物的氧化降解,可以迅速溶解在水中成为高浓度溶解氧,从而彻底解决污水处理中提高氧溶解度的难题。
2、能量的产生
高能氧所含有的粒子能量来源如下五个方面:
2.1、电离能:
氧气经过电离后生成部分氧离子,并形成等离子体,当电离作用消失后,氧等离子体消失,转变成活性氧气团,主要包括臭氧离子团(o32—、o3—)、臭氧分子团(o3)、氧离子团(o22—、o2—)、氧分子团(o2)等,这些活性氧气团具有非常高的电离能,经过气体切割后,各种离子团和分子团分离,切割动能转变为气泡能级跃迁能量,在各个气泡中表现为电离能提高,达到可以随时产生氧化作用的高能级,可以氧化一切接触到的物质。
2.2、高速动能:
气泡是经过水对目标气体离心切割吸入作用产生的,切割后产生水气混合液体,气泡伴随着切割水溶液在蜗旋加速系统中加速运动,由于蜗旋加速系统的特点是进水总量与喷射出水总量相等,而进水口管径远远大于出水口径,所以出水口的水溶液流速将大幅度提高:
l1s1= 2l2s2
l1为进水口水溶液流速,s1为进水口截面积
l2为出水口水溶液流速,s2为出水口截面积
s1=πd12/4 d1为进水口直径
s2=πd22/4 d2为出水口直径
则出水口水溶液流速l2计算如下:
l2=l1d12/2d22
蜗旋加速系统的进水口直径d1=g1/2”,
蜗旋加速系统的出水口直径d2=g1/16”
则l2=64l1
一般进水口流速l1的选定范围为4—10米/秒,最高为20米/秒,因此出水口流速l2的增速范围为256—640米/秒,最高出水口流速可以达到1280米/秒。
当活性氧气泡流速达到256米/秒以上后,气泡就具有了非常高的动能,这种动能足以在有效传输距离(发生断裂化学键和共价键的传输距离)中打破任何污染物与水分子之间的共价键连接和污染物内部的化学键连接,实现水质净化还原和对污染物的氧化降解,一般有效传输距离为0.5—0.8米;当活性氧气泡流速达到640米/秒甚至更高时,活性氧气泡被压缩得更小,气泡拥有的动能将倍增,在水中的有效传输距离将提高到3米以上,进一步提高了气泡对污染物的氧化降解作用率和对污水净化的作用。
微纳米气泡与几种典型的物体运动速度对比
种类 |
速度 |
氢气分子 |
1768米/秒 |