屋面光伏荷载承载力安全性检测鉴定资质单位
方案一:网架结构,划分为4个倾斜放置和1个平放的平板部分,为方便坡屋面相交处的单元构造,网架采用三角锥为基本单元,厚度为2m,支座设在网架下弦节点,通过不动铰坐落在周围混凝土框架梁柱顶。网架结构用钢量省、空间刚度大、整体性好、抗震能力强,但用于本工程也有缺点:1)网架的厚度占用建筑高度,网架杆件较密,多而乱,建筑师认为室内观感不佳;2)由于网架起坡成拱形,支座有较大的外推力,这对于下面支承的混凝土框架结构设计不利;3)网架节点构造复杂,特别是坡面相交处,施工不便。
方案二:刚架结构,在长跨方向中部布置4榀折线型门式刚架,跨度24m,梁线与屋面折线平行,刚架支承在混凝土框架梁柱顶,垂直于刚架方向及坡屋面相交处布置次梁。为刚架的稳定性及增强屋盖刚度,需在屋面设置水平支撑体系。刚架及次梁采用H型钢,水平支撑采用圆钢管。刚架结构力学模型清晰,计算简单,但由于屋面跨度较大且荷载重,刚架截面较大,经济性差。且折线型门式刚架在竖向荷载作用下同样存在对支座的水平推力,给支承的混凝土结构设计带来难题。方案三:双向正交钢桁架结构。根据建筑坡屋面形态,通过调整柱网布置,两正交方向各设2榀主桁架,桁架的弦杆和建筑坡屋面保持平行。X向主桁架跨度为26.3m,Y向主桁架跨度为24m。4榀主桁架两两正交,交汇节点采用刚性连接,形成相互支撑的稳定体系,每榀主桁架两端支座设置在外围框架柱顶上,与柱顶铰接。主桁架中部高度为3.125m,两端部高度随坡屋面变化,按1:2坡度由3.125m逐渐减为零。屋面四角设置三角桁架,与X向主桁架连接,高度由3.125m逐渐减为零。X向及Y向的主桁架间及角桁架间设置次桁架,间距为主桁架的节尺寸,高度由1.125m~3.125m不等。次桁架、角桁架与主桁架之间的连接均采用铰接。在外围混凝土框架柱顶上部设置一圈H型钢梁及水平斜支撑。次桁架不仅能将屋面荷载传递给主桁架,起到竖向支撑的作用,增强屋盖的刚度和整体性。此方案既能满足建筑屋面形态的要求,视觉上也较简洁,结构受力合理,不存在支座推力问题,利于下部支承混凝土结构设计,用钢量相对较省,作为Zui终结构实施方案。
工程特征:分布式安装,以380 V/10 kV电压等级将分布式光伏电站[1]接入用户电网,就近消纳,余电上网。
建设规模:本期建设规模为6.291 MW,分别安装在铁芯材料表面处理车间、晶体处理车间、常化酸洗车间和制氢制氮车间屋顶。该厂区条件非常适合光伏电站的建设和利用,是分布式光伏发电示范区。1.2 设计依据
组件尺寸为1640 mm×990 mm×50 mm;组件重量为20 kg;大风速为30 m/s。安装方式:组件安装采用纵向2×10阵列安装,20块组件为一个单元;采用固定倾角钢支架,支架倾角为33°。
2 支架型材强度计算
2.1 设计取值
1)假设为一般地方中大的荷重,采用固定荷载G和暴风雨产生的风压荷载W的短期复合荷重。
2)根据气象资料,本计算大风速设定为30 m/s。
3)对于混凝土屋面,采用佳倾角33°安装的系统需要考虑足够的配重,确保组件方阵的稳定可靠。
4)屋面高度为10 m。2.2 承受荷载2.2.1 固定荷载G
以2×10阵列为一个单元进行计算,则光伏
如何实现并网光伏系统的整体优化设计从而降低发电成本是光伏发电平价上网的核心问题。光伏系统整体优化设计主要从组件选型、安装倾角优化、环境匹配等方面加以优化,从而减少系统发电损失。据测算电站由于组件选型、倾角设计、环境因素等方面的设计不当造成的损耗约占总发电量的20%,具体损耗比例如图2所示。规划建设了光伏组件户外优化测试系统(图3),该
系统目前已具备多种户外实证性测试功能(图4),可通过长期实时监测组件发电性能,同步搜集天气环境数据,比较不同类型电池的发电能力,安装倾角及跟踪方案对发电量的影响。
确保结构安全:验证屋顶结构是否能够承受光伏设备的重量及风压、雪载等外部因素,防止因承载力不足导致的结构损坏或坍塌。
符合规范要求:确保光伏系统的安装符合国家和地方的相关建筑安全规范及光伏行业标准。
优化系统设计:根据检测结果,对光伏系统的布局、支撑结构等进行优化,提高系统的稳定性和发电效率。
资料收集与审查
收集屋顶结构的设计图纸、施工记录、地质勘察报告等相关资料。
审查资料,了解屋顶结构的形式、材料、构造特点等基本情况。
现场勘查
对屋顶结构进行现场勘查,记录屋顶类型、结构层次、构造特点等。
检查屋顶结构的损坏情况,如裂缝、锈蚀、变形等。
荷载分析
根据光伏系统的重量、尺寸及运行特点,分析其对屋顶结构的荷载要求。
考虑风荷载、雪荷载等外部因素对屋顶结构的影响,进行荷载组合分析。
承载力评估
采用计算模型对屋顶结构的承载力进行评估,包括材料的力学性能、结构的刚度、稳定性等。
结合光伏系统的重量分布、风压雪载等外部因素,评估屋顶结构是否满足光伏系统的安装和运行要求。
出具检测报告
根据检测评估结果,编制详细的检测报告,包括检测过程、结果、分析和建议等内容。
报告中应明确指出屋顶结构的承载能力是否满足光伏系统的要求,以及可能存在的安全隐患和整改建议。
选择专业机构:选择具有相应资质和经验的第三方检测机构进行检测鉴定,确保检测结果的准确性和可靠性。
遵循规范标准:检测鉴定工作应严格遵循国家和地方的相关规范及标准,确保检测过程的科学性和规范性。
注重现场安全:在检测过程中注意现场安全,防止发生安全事故。同时,应确保检测过程对屋顶结构本身不造成损坏。
及时处理问题:对检测中发现的问题应及时进行处理和改进,确保光伏系统的稳定运行和屋顶结构的安全。
钻芯取样技术:用于直接测定混凝土的抗压强度,提高检测结果的准确性。
超声回弹综合法:结合超声检测和回弹检测的方法,提高检测结果的可靠性。
钢筋探测仪:用于扫描梁、板、柱等关键构件的钢筋配置情况,包括钢筋直径、间距及保护层厚度等关键参数。
无损检测技术:如超声检测(UT)、射线检测(RT)、磁粉检测(MT)、渗透检测(PT)等,用于在不损害或不影响被检对象使用性能的前提下进行检测。
通过以上流程和方法,阳江市屋顶光伏承重安全检测鉴定能够全面评估屋顶结构的承载能力,确保光伏系统的安全、稳定运行。