在经济社会发展过程中,能源的供需矛盾日益突出,对于绿色可再生能源的开发与应用成为了解决这一矛盾的关键所在。在这样的大背景下,风力发电的优势格外显著,风电项目的开发利用越来越受到重视,目前已成为新能源的发展重点之一。
在风电项目建设过程中,作为重要组成部分,风电基础有着无可替代的重要作用。为了满足风电机组能够正常运营,风电基础建设的体积大、厚度高,为大体积混凝土。如果在质量上把控不严,基础出现质量问题,将直接对风电机组的正常运营造成严重威胁,甚至导致事故的发生。
对于风电基础混凝土缺陷及裂缝的检测,可依据NB/T 10227-2019《水电工程物探规范》及CECS21:2000《超声法检测混凝土缺陷技术规程+》、JGJ/T 456-2019《雷达法检测凝土结构+技术标准》等标准规范进行。
检测风电基础混凝土内部缺陷有多种物探方法可供选择,探地雷达法是较为常见的一种。采用探地雷达对风电基础混凝土缺陷进行检测时,由于不同频率天线的探测能力不同,要综合考虑对探测深度与分辨率的需求,结合以往的检测经验选择合适的天线频率,以保证原始数据的真实、可靠详细。
风电机组的运行环境很多时候是及其恶劣的,比如大多数风电机组安装在山地、戈壁沙漠等野外环境,不可避免要长期受风沙、日晒、雨淋、盐雾等侵袭。势必带来风机防腐方面的难题,国内对于风机混塔(架)底部基础环外的防腐并未形成行业标准。大部分业主未进行有效的底部基础缝隙的防腐处理。此外、由于部分风机所处环境昼夜温差大,载荷变化频繁,不同风机的基础地质条件也各不相同,以上多种因素造成风机运行环境恶劣,直接关系到设备的健康状况,影响设备的使用寿命。
目前,风电机组的设计寿命大多是20年,在这期间,每一个塔架螺栓至少要被力矩扳手拉伸40多次,这使螺栓接近设计疲劳期。同时,在实际的运行工况下风机必须适应在各种风速下运行,塔架螺栓和焊缝受各方向的剪切力,极有可能造成焊缝的应力集中或螺栓的过度疲劳,致使风机使用寿命降低。
风电混塔结构安全检测是确保风电场长期稳定运行的关键环节。通过检测,可以及时处理安全隐患,延长风电混塔的使用寿命,并确保风电场的高效运行。
本次受检混塔位于湖北省天门市,为200MW风电项目工程。本项目包含40台GWH191-5000-HH160m机组,该批风机混塔建造于2024年。为了解基站的混塔现状,指定抽检2座混塔进行混塔质量检测,分别为F12#、F16#混塔。
本次检测鉴定的主要内容包括:
(1)初步调查;
(2)地基基础检查;
(3)混塔结构外观质量和内部缺陷;
(4)钢筋配置和钢筋锈蚀状况检测;
(5)回弹法测混凝土抗压强度;
(6)依据国家标准、现行规定和现场检查、检测结果,对该混塔质量进行检测,出具正式的检测报告。
处理建议:
(1)对于塔外混凝土基础表面多处存在环向和竖向裂缝,部分内壁混凝土损伤剥落,爬梯与筒壁连接螺栓未紧固,操作平台固定螺栓变形,锚固螺帽锈蚀等外观质量不良的问题,应采取可靠处理措施。
(2)设计和施工应委托具有相应资质的专业单位按照相关标准及管理规定进行。设计时应依据确定的方案、使用荷载、加固荷载、工程地质情况及相关标准等对混塔的地基基础、主体结构构件的承载力及变形、内衬、防腐等进行核算与设计。
(3)在日常使用维护过程中,应对混塔的使用环境以及损伤和允许情况等进行定期的日常检查,检查周期每年不应少于1次。
通过集成无人机系统、高清摄像头、传感器以及智能分析软件,实现了对风机叶片的实时、高效检测。湛江风力发电机塔筒检测,实施全面的设备风险评估,针对风机、变电站及其附属设施,采用数据驱动的方法进行风险等级划分,优先关注高风险区域。产品规格方面,大口径、高要求的不锈钢管及超长管等,缺口较大;一般用途的中不锈钢管的生产能力大于市场需求。产品数量方面,较高标准的工业用焊管,尤其是高要求的工业用管基本是空白,普通不锈钢管的产量与市场总体需求平衡,普通无缝管的生产能力过剩,中、低档次标准的不锈钢装饰焊管市场供大于求。近十年来,随着应用领域的迅速扩展,国内对不同材质、不同规格、不同品种、不同用途的不锈钢管需求猛增;加上不锈钢管高附加值的吸引,生产不锈钢管材的企业从8年代时的十几家发展到目前的4多家,综合生产加工能力超过1万吨,实际产量从的5万吨增加到1999年的39万吨;产量达5吨水平的企业很少,多数是年产1吨以下的小厂。