密封条玻璃化转变温度检测,测纯水的电导率
通过球磨法制备了以下材料:Li10GeP2S12,Li6PS5Cl,Li6PS5Br,Li5,5PS4,5Cl1,5,Li7P3S11和80 Li2S-20 P2S5。所制备的材料主要是非晶态(AM材料)或部分结晶的含有纳米微晶的玻璃陶瓷(GC材料)。所制备的Li7P3S11主要是无定形的,但可通过260 ℃左右的低温退火转化为GC材料。具有高结晶度的微晶Li10GeP2S12、Li6PS5Cl、Li6PS5Br和Li5,5PS4,5Cl1,5是通过球磨粉末在550 ℃左右的高温下退火制备的(μC材料)。通过在两个碳化钨电极之间夹入SE小球(在小球表面不溅射金属膜)来进行堆栈压力相关的离子电导率测量。所施加的大压力约为500 MPa。或者,在颗粒表面溅射金属膜,并在约10 MPa的低堆栈压力下在特定电池中测量离子电导率。
与无定形或玻璃陶瓷固态电解质相比,微晶固态电解质的制造-压力-依赖-形貌。当非晶或玻璃陶瓷材料中的颗粒经历压力-诱导烧结过程时,微晶颗粒仅通过制造压力而致密,而不是烧结在一起。这种独特的形貌对释放制造压力后的Li+离子电导率产生巨大影响。
图2展示了不同AM、GC和μC固态电解质的Li+离子电导率数据,其是针对不同的颗粒制造压力值绘制的。在低堆栈压力下,由于SE颗粒与碳化钨电极接触不良,所有材料的离子电导率值都非常低。