塔架的稳定性是风电机组可靠运行的核心,无论是混合结构塔架还是钢塔,都必须确保最高的安全标准。钢塔作为市场上最常见的塔架类型,其应用比例超过90%。在120米至140米高度的机组中,柔性钢塔技术得到了广泛应用,其重量更轻,成本更低,但在其他方面与传统的刚性塔架相似。钢塔技术自风电发展初期至今,已历经多年安全验证,形成了完善的产业链。在一定高度和条件下,钢塔技术仍具有其独特优势。混合结构塔架技术则是近年来的创新产物,自首台样机建成以来,已经通过了实践的检验。数据显示,国内混合结构塔架的装机容量已达到18GW,2023年的中标和交付数量分别达到近4000台和2000台。
在全钢柔塔技术的不确定性和钢材成本上升的背景下,混合结构塔架技术成为了提升风机高度和保障机组可靠性的新趋势。国内超高空机组,如180米及以上,几乎全部采用了混合结构塔架技术。尽管混合结构塔架在成本、结构刚度、运输限制等方面具有优势,但其生产周期较长、对环境条件要求较高的问题仍是行业面临的挑战。
随着风机容量越来越大,混凝土塔筒的应用逐渐广泛。虽然混凝土塔筒已经有多年的应用经验,但并未大规模应用;应用数量较少、设计、供应链、安装等环节并未完全成熟,导致混凝土塔筒问题频发。常见混凝土缺陷缺陷,会对风机造成安全隐患,如管片压溃、倾斜、晃动,这些缺陷修复时间较长且成本很高。
混塔运行阶段,检测内容一般有:基础巡检、裂缝检查、检测、水平度检查、沉降检测、垂直度检测、钢绞线索力检测、预应力检测等。
预应力技术在现代工程结构中得到了广泛的应用,如桥梁、高层建筑、大跨度屋盖等。预应力体系的可靠性和安全性对于结构的整体性能至关重要。然而,由于施工质量、材料老化、环境侵蚀等因素的影响,预应力体系可能会出现各种缺陷和损伤,从而降低结构的承载能力和耐久性。因此,开展预应力体系的综合检测工作,及时发现和评估潜在的问题,对于保障结构的安全运行具有重要意义。
XXXX风电厂一期20台风机监测结论:
(1)2024年度观测值与2021年度观测值的变化量对比分析:A1线风机变化最大观测点为A1-08F其中观测点1、观测点2、观测点2、观测点4累计变化值分别为5.63、8.49、1.48、3.96平均速率最大为0.012mm/d,未超过允许值;地基局部倾斜最大点为A1-09F,最大倾斜率tanθ=0.0009,未超过允许值。
(2)2024年度观测值与2021年度观测值的变化量对比分析:A2线风机变化最大观测点为A2-07F其中观测点1、观测点2、观测点2、观测点4累计变化值分别为7.57、5.78、0.19、2.12平均速率最大为0.012mm/d未超过允许值;地基局部倾斜最大点为A2-10F,最大倾斜率tanθ=0.0009,未超过允许值。
综上所述,XXXX风电厂一期20台风机各个观测点变化量及累计变化量均在允许范围之内。
进行塔筒检测作业,禁止在变频器柜上方行走,作业区域应远离变频柜。清远风机混塔检测,风电基础检测主要包含:原材料检测(混凝土原材料检测、钢筋检测、套筒检测、灌浆料检测、风电锚栓检测、螺母及垫圈检测、电力管检测、护栏检测、预埋件检测)、除此之外还有现场检测,主要有(桩基静载试验、高应变检测、低应变检测、接地电阻检测、涂层厚度检测)等等。不锈钢产量在近半个世纪有了大幅度增加,大量生产体系的建立,导致低价格的实现是其重要的因素,而在与此需求相应的基础上,进行钢种的开发和表面质量的改善和处理也做出了很大的贡献。在通常的使用环境中,不锈钢即使在金属表面状态,也保持着金属光泽。所以对要求清洁感的厨房机械和要求观赏性的建筑材料都要经过各种表面加工处理后进行使用。本专集将介绍不锈钢制品所具有的多种表面加工处理、制造工艺、特征及其使用状况。不锈钢的表面钢具有优良的强度、韧性和加工性,在生活中大量存在有金属材料之王的美称,其最大的缺点是在空气中易生锈。