塔架的稳定性是风电机组可靠运行的核心,无论是混合结构塔架还是钢塔,都必须确保最高的安全标准。钢塔作为市场上最常见的塔架类型,其应用比例超过90%。在120米至140米高度的机组中,柔性钢塔技术得到了广泛应用,其重量更轻,成本更低,但在其他方面与传统的刚性塔架相似。钢塔技术自风电发展初期至今,已历经多年安全验证,形成了完善的产业链。在一定高度和条件下,钢塔技术仍具有其独特优势。混合结构塔架技术则是近年来的创新产物,自首台样机建成以来,已经通过了实践的检验。数据显示,国内混合结构塔架的装机容量已达到18GW,2023年的中标和交付数量分别达到近4000台和2000台。
在全钢柔塔技术的不确定性和钢材成本上升的背景下,混合结构塔架技术成为了提升风机高度和保障机组可靠性的新趋势。国内超高空机组,如180米及以上,几乎全部采用了混合结构塔架技术。尽管混合结构塔架在成本、结构刚度、运输限制等方面具有优势,但其生产周期较长、对环境条件要求较高的问题仍是行业面临的挑战。
近年来,我国风电高塔架技术进步显著,钢混塔架以其大容量机组高塔架的技术可实现性、更具经济性的优势得到了广泛应用。远景能源170米混塔在2023年实现批量交付;运达股份也于同年完成180米超高性能混凝土材料混塔吊装,并在不久前实现全球首个180米超高混塔风电项目首批机组并网。它们与上述185米钢混塔一起,为风电机组大型化发展和高切变地区风能资源开发,起到了积极推动作用。
利用钢混塔将机舱与风轮托举到更高的空中,对风电发展而言,有两项意义最为重要:一方面,更高的塔架能支撑机组大型化发展。近些年,我国风电机组单机容量不断增大,为提升大容量机组的发电能力,更长的叶片应运而生。目前,我国已下线的最长陆上风电与海上风电叶片分别达到131米和143米。如果塔架高度不足,叶片与地面就无法保持安全距离,极易给整机带来安全隐患。
本次对风电场所属14号、28号风机进行高强度螺栓无损检测。高强度螺栓无损检测是在不拆卸的情况下进行螺栓无损探伤检测,对骑龙山风电场14号风机、28号风机基础环上法兰与第一节塔架下法兰连接螺栓、第一节塔架上法兰与第二节塔架下法兰连接螺栓、第二节塔架上法兰与第三节塔架下法兰连接螺栓、第三节塔架上法兰与偏航轴承连接螺栓、叶片与变桨轴承连接螺栓、轮毂与主轴连接螺栓、变桨轴承与轮毂连接螺栓、主轴轴承座连接螺栓、齿轮箱弹性支撑进行无损探伤检测,探伤检测比例不低于每个部位螺栓总数的15%。检测面为螺栓尾部端面(或螺栓头端面),对于塔筒连接在役螺杆,检测面螺栓端面,用单晶直探头沿螺栓端部周边缓慢移动,观察光屏上波形的变化,当各齿形波无明显变化或出一丛波的圆滑变化,则证明齿根部完好无缺陷,只要波形没有突变,则裂纹的可能性将排除。当有波明显高于正常齿形波时,则应考虑缺陷存在的可能。
风电混塔是一种将风电机组支撑在塔架上的结构,它可以提供更强的支撑力和更稳定的结构,从而提高风电机组的工作效率和寿命。大连风力发电机塔筒检测,通过集成无人机系统、高清摄像头、传感器以及智能分析软件,实现了对风机叶片的实时、高效检测。南山矿业公司尾矿选铁厂。尾矿由凹山(或东山)选矿厂直接输送到选铁厂,经盘式磁选机选出粗精矿,然后经再磨和两段磁选,获得铁精矿。其主要工艺流程见图14。尾矿再选效益分析9年代以来我国许多铁矿选矿厂为了充分利用尾矿资源,降低精矿成本,千方百计采用各种措施对现已生产的选矿厂排出的尾矿进行再选。一些大中型铁矿选矿厂在尾矿再选方面均获得了较好的技术经济指标。我国部分铁矿选矿厂尾矿再选技术经济指标见表3。