混塔塔架内、外部环氧树脂胶检测:
探针检测水平缝(内、外部环氧树脂胶密实度);对混塔段每个缝进行检查,检测间距根据实际塔筒损坏情况抽检。针对未修复部位采用蜘蛛人对塔筒内、外部壁用探针进行座浆料缺失深度直接测量。该检测方法为直接测量法。A、B、C段塔身水平缝根据实际情况确定测点数量;检测结果与设计文件进行比对,确认是否符合设计要求。
检测依据:(1)《混凝土结构工程施工质量验收规范》GB50204-2015;(2)《混凝土结构现场检测技术标准》GB/T50784-2013。
检测原理:探针法是通过将探针插入混凝土表面,根据探针的深度来判断裂缝的深度。一般来说,如果探针插入混凝土表面的深度比较大,说明裂缝比较深;反之,如果探针插入裂缝深度比较小,说明裂缝比较浅。该方法可以对深度较大的裂缝进行准确的检测,但是操作比较繁琐,需要耗费较长时间。
对塔筒内、外壁用探针探入缝中,直接用深度测量尺对环氧树脂进行测量其深度,测试为塔筒内外环片周长每1m距离1点进行测试。
随着风电场和高风险作业场所的迅速发展,安全隐患和风险防控逐渐成为企业关注的重点。特别是在风机设备和电气系统等关键设备上,设备老化、环境变化以及人为操作失误等因素都可能导致安全事故。
风电塔风险安全隐患排查:
(1)风机设备故障:定期对风机的叶片、轮毂、主轴、齿轮箱、发电机等关键部件进行检查和维护。例如,检查叶片是否有裂纹、腐蚀、结冰等现象,齿轮箱的油温、油位是否正常,发电机的绝缘性能是否良好等。利用先进的检测技术,如振动监测、温度监测、油液分析等,及时发现设备的潜在故障。
(2)电气系统隐患:对变电站的电气设备,如变压器、开关柜、断路器、电缆等进行全面检查。查看电缆是否有破损、过热现象,开关柜的操作机构是否灵活可靠,变压器的运行声音是否正常等。同时,对电气系统的接地、防雷等保护装置进行检测,确保其有效性。
(3)塔架及基础问题:检查塔架的垂直度、螺栓的紧固程度、塔架的防腐情况等。对于塔架基础,要检查基础的沉降情况、混凝土的强度是否满足要求等。在地质条件复杂或地震多发地区,还需要加强对基础的抗震性能检测。
混塔空鼓检测:根据外观检查中判定结果确定需要检查的空鼓检测点进行雷达或超声波技术检测。基于本方案外观检查依据T/CECS882-2021进行裂缝外观检查中裂缝判定的结果,对于c级裂缝区域确定需要检测的空鼓检测点,进行相应技术检测。
检测依据:(1)《风电塔架检测鉴定与加固技术规程》T/CECS882-2021;(2)《超声法检测混凝土缺陷技术规程》CECS21-2000。
本次工作采用探地雷达广谱电磁波技术确定混凝土内部缺陷分布情况。由探地雷达系统中的窄脉冲发射源通过发射天线向地下发射高频宽频域单脉冲,地下脉冲在向探测物体内部传播过程中,遇到不同电性介质界面产生不同强度的反射,通过接收天线在全时域上的接收后向散射及反射电磁波,再利用接收到的反射电磁波电磁学特征及发、收天线几何位置关系经过数据图像信号处理,得出探测体内的反射体空间位置及形态。
雷达探测的效果主要取决于不同介质层面的电性差异,利用探地雷达探测混凝土内部缺陷异常体时,必须满足以下条件:
(1)发射的电磁波的能量必须大到能够到达病害或缺陷位置,并能返回被接收器探测到;
(2)异常体的阻抗差别要足够大,以便造成充分的反射;
(3)异常体要大到能在规定的深度内探测到;
(4)其它干扰不足以影响来自异常体的反射。
基于人工智能,集成了激光雷达,高速相机和边缘计算模块,为风机不停机设计的一体化风机巡检方案。吉林风电风机检测,在强风天气来临前,提前对风机进行停机保护,检查塔架的加固措施是否到位。20世纪80年代以后,由于顶底复合吹炼转炉的引入,顶吹喷枪射流作为搅拌动力源的作用减少,大幅度提高了其设计和操作的自由度。90年代后半期以后,新日铁扩大应用以MURC(Multi-RefiningConverter)为代表的转炉型铁水预处理法。,在MURC工艺中,用一种喷枪兼顾脱磷吹炼和脱碳吹炼。此外,为了解决随着中间排渣和固态渣等工序的增加而降低生产率的问题,需要进一步优化顶吹喷枪射流。另一方面,在钢铁领域也普及了计算流体力学(CFD:ComputationalFluidDynamics)技术,可以模拟原来不易模拟的压缩性流体、多相现象及反应等复杂现象。