社会发展对电力需求快速增长,加上人们对环境保护愈发重视,因此风力发电成为一种越来越受欢迎的清洁能源形式。作为风力发电设备的核心组成部分之一,风力发电机组塔筒材料的选用至关重要,甚至对整个风力发电机组的性能和寿命有着最为直接的影响。
得益于其稳定性、经济性、安全性、环保性等多方面的优势特征,混凝土风电塔筒在具体应用中占据着重要地位。混凝土风电塔筒作为风力发电机组的一个重要部件,是支撑风力机组叶片、转子和发电机的结构,不仅需要承受风的冲击力和塔架本身的重量,同时吸收机组震动,因此对其质量有着严格的要求。
由于塔筒成型质量与每一个构件都息息相关,为保证风电项目的整体质量,对混凝土塔筒管片的质量控制须放在重要位置。从对钢筋、水泥、骨料、埋件等核心原材料的筛选,到钢筋笼的精准制作、混凝土的精细浇筑,再到成品涂装,每一个环节和流程都实施最严格的把控与数据检测,以科学的方法得出每一个准确的数据。
混凝土风电塔筒的制作和安装是一个复杂的系统工程,其质量控制需要各相关方的共同努力。在运营过程中,混凝土风电塔筒在使用过程中通常也需要定期检查维护,如果出现裂缝、混凝土破损等情况需要及时修复以免影响到风力机组的正常运转。此外,混凝土塔筒因其自身特性,对基础要求较高,因此除了严格把控塔筒质量,对风电基础的质量检测也同样不容忽视。
风电机组的塔架是支撑风机组件并承受风荷载的重要结构之一,其可靠性和安全性对风电机组的运行起着至关重要的作用。为保证风电机组能够安全稳定地运行,需要对塔架进行定期检查和维护。塔架定期检测内容一般包含以下几点:
一、外观检查。外观检查是检查塔架的一个基础步骤,通常包括以下内容:
1.观察塔身的表面是否有损坏、腐蚀、裂缝等现象。
2.检查塔架的外观是否有塔筒变形、支撑结构是否存在脱落等问题。
3.检查塔身外表是否有松动的零件或其它物品,如螺栓、螺母等。
4.检查塔身内部是否有积水、腐蚀、结冰等情况。
二、结构检查。与外观检查相比,结构检查更加细致。主要包括以下内容:
1.检查塔筒连接处是否存在腐蚀、裂缝、支撑构件是否变形,特别是各个接口处。
2.检查塔架的基础是否完好、表面是否平整。
3.检查塔筒和塔座之间的连结是否松动或过分的紧密。
4.检查塔顶平台、转动系统、发电机、变速器、电缆悬吊架等部件是否处于良好状态,并进行必要的调整。
三、电气检查。风电机组塔架上的电气设备也需要定期检查和维护,以确保其正常工作。主要包括以下内容:
1.检查电极接头盒、悬吊电缆绳等部件是否受磨损 or 电线是否破岸,确保其连接牢固可靠。
2.检查发电机、变频器和控制系统等电气设备是否正常,是否有松动的电线接头或腐蚀的电子元件。
3.检查塔筒内部的电缆盘是否完好、接地系统是否符合标准,并进行必要的更换或修理。
通过定期检查风电机组塔架的外观、结构、电气部分等内容,可以避免因塔架损坏或失效而导致的安全事故或机器损坏。同时,也是确保风电机组的安全和稳定运行的前提。
风力发电机塔架是连接风机的重要部件,它承受了风力作用在叶轮上的推力、扭矩、弯短、陀螺力矩、电机的振动及受力变化时的摆动。行业内就出现过由于塔架质量问题导致的风机倒場质量事故。风力发电机组塔架生产检验过程中,多次使用到无损检测来检验原材料、外购法兰以及焊接焊,来保证风机塔架的质量。
风力发电机塔架缺陷检测内容一般有:
1、风机塔筒焊缝(环缝、纵缝)检测:表面裂痕检测MT(磁粉检测)、PT(渗透检测)、内部缺陷检测UT(超声波检测);
2、风机法兰连接螺栓检测:内部缺陷检测UT(超声波检测);
3、风机轮毂与主轴连接螺栓检测:内部缺陷检测UT(超声波检测);
4、风机塔机垂直度检测:借助水准仪、经纬仪检测;
5、风电机架检测:表面裂痕检测MT(磁粉检测)、PT(渗透检测)、内部缺陷检测UT;
随着对风电混塔结构安全性研究的深入以及检查技术的不断进步,未来风电混塔的检查将更加高效、精准,风电产业的安全性和可靠性也将持续提升,为全球的可再生能源发展做出更大贡献。上海风机塔筒检测,根据现场测量条件,采用全站仪,按照投点法测量混塔上部相对于下部的偏移值,并经过计算得出混塔整体倾斜情况。HDPE双壁波纹管为柔性管,对沟底要求不高。HDPE管对地面下沉或地壳变动不断裂;HDPE管的伸长率为钢管的2多倍,是PVC的六倍半,其断裂伸长率却非常高,延伸性很强。这就意味着当地面下沉或发性地震时地壳有变动的情况下,HDPE管能够产生抗性变形而不断裂。这一点远优于钢管,也优于有明显脆性的PVC管。这一性能已被国内外的证明(日本阪神大地震未造成管断裂;HDPE管在支南保山地震中未破坏都是证明)。